diff --git a/Utilities/for_taxonomy/Query_SRA_egs.py b/Utilities/for_taxonomy/Query_SRA_egs.py
new file mode 100644
index 0000000..bc9deda
--- /dev/null
+++ b/Utilities/for_taxonomy/Query_SRA_egs.py
@@ -0,0 +1,133 @@
+'''
+Modified by Elinor 2/13 to grab recent assemblies (since 2020) and GCA codes. Input is folder 'unique_taxon_lists' with files
+of keywords by major clade (separated by new lines). Put -t (transcriptome, SRA db) or -g (genome, assembly db) in the command
+line to specify data type
+
+restrictions:
+ All data is since 2020
+ SRA excludes entries with 'Amplicon' in the description, and outputs the experiment and sequencing technology.
+
+example command line: python Query_SRA_egs.py -t
+
+Output: file of species, IDs, and GCA or SRR codes AND a file with uniquified codes. Updated 3.21.23 to output sequencing machine and type of experiment from SRA
+
+'''
+
+from Bio import Entrez
+from Bio import SeqIO
+import os
+import sys
+
+
+def get_args():
+
+ Entrez.email = "@smith.edu"#CHANGE UR EMAIL
+ Entrez.tool = "Biopython_NCBI_Entrez_downloads.ipynb"
+
+ if len(sys.argv) < 2:
+ print(f'enter -t or -g in command line to choose genomes (-g) or transcriptomes (-t)')
+ if '-t' in sys.argv:
+ data_type = False
+ elif '-g' in sys.argv:
+ data_type = True
+
+ with open('RecentIDs.csv', 'w') as o:#starts output file and writes header
+ o.write('major clade, keyword, species, ID, experiment, sequencing technology, GCA/SRR,\n')
+
+ get_keywords(data_type)
+
+
+def get_keywords(data_type):
+
+ for file in os.listdir('unique_taxon_lists'):
+ if file.endswith('_unique.csv'):#put name of file to look at here. or only .csv to look at all of them
+ with open(f'unique_taxon_lists/{file}', 'r') as lines:#read each file
+ mc = file.split("_unique.csv")[0]
+ print(f'Searching taxonomic names in {mc}\n\n')
+
+ for line in lines.readlines():#iterate file
+ keyword = line.strip()#keyword for genbank search is each word in the files
+
+ if data_type == False:
+ fetch_SRA(mc, keyword)
+ if data_type == True:
+ fetch_CDS(mc, keyword)
+
+ write_unique_codes()
+
+
+def fetch_CDS(mc, keyword):#searches your keywords in the assembly database
+ print(f'\nGrabbing recent CDSs')
+ all_stuff = []#initiate list, will put genbank codes into this
+
+ #get IDs of assemblies for keyword since 2020. Returns multiple IDs
+ handle = Entrez.esearch(db="assembly", term=keyword + "[Organism:exp]" + "2020 [SeqReleaseDate]:3000", retmax=100)
+ id_record = Entrez.read(handle)
+ print(f'There are {len(id_record["IdList"])} assemblies labeled as {keyword} in genbank since 2020\nFetching IDs and GCAs\n')
+
+ #Iterate through list of IDs given above, seach for their associated GCAs. Only one GCA for each ID, and each corresponds to 1 individual sequenced
+ for tax_id in id_record['IdList']:
+ handle = Entrez.esummary(db="assembly", id=tax_id, retmode="text")
+ gca_records = Entrez.read(handle, validate=False)
+ handle.close()
+
+ #parse the output (its really awful. pythonic turduken: dict(list(str(dict))) type deal)
+ for record in gca_records['DocumentSummarySet']['DocumentSummary']:
+ sp = record['Organism']
+ gca=record['AssemblyAccession']
+ stuff = f'{mc}, {keyword}, {sp},{tax_id}, , ,{gca}'
+ all_stuff.append(stuff)
+
+ write_to_csv(all_stuff)#send this new info to be added to output sheet
+
+
+def fetch_SRA(mc, keyword):#searches your keywords in the SRA db
+
+ all_stuff = []
+ print(f'\nGrabbing recent SRRs')
+ # get IDs from taxonomies
+ handle = Entrez.esearch(db="sra", term=keyword + "[Organism:exp]"+ " 2020:2023[PDAT]", retmax=100)
+ id_record = Entrez.read(handle, validate = False)
+ print(f'There are {len(id_record["IdList"])} SRAs labeled as {keyword} in genbank since 2020\nFetching SRAs\n')
+
+
+ #get SRRs for taxonomy
+ for rec in id_record['IdList']:#iterates through all of the IDs for the taxonomy
+ tax_id = rec
+ handle = Entrez.esummary(db="sra", id=tax_id)
+ srr_records = Entrez.read(handle)#parse genbank info
+
+ #parse out all information needed from genbank info
+ sp = srr_records[0]['ExpXml'].split('ScientificName="')[1].split('"')[0]#extract species from genbank info
+ srr = srr_records[0]['Runs'].split('"')[1]#extract srr from genbank info
+ seq_type = srr_records[0]['ExpXml'].split('')[1].split('')[0]#parse to "library_strategy" parameter to check if its amplicon
+ machine = srr_records[0]['ExpXml'].split('')[0]#get the type of sequencing machine used
+ if 'AMPLICON' not in seq_type:
+ stuff = f'{mc}, {keyword}, {sp}, {tax_id}, {seq_type}, {machine}, {srr},'#write to comma separated string
+ all_stuff.append(stuff)
+
+
+ write_to_csv(all_stuff)
+
+def write_to_csv(data):#writes the output from fetch_SRA or fetch_CDS to a csv
+ with open('RecentIDs.csv', 'a+') as o:
+ for i in data:
+ o.write(f'{i}\n')
+
+def write_unique_codes():#uniquify the list of IDs that the scipt grabbed. since we are searching all taxanomic levels, we query many repeats so this removes them.
+
+ #Writing unique files
+ with open('RecentIDs.csv', 'r') as o:# read file of all data
+ taxa = o.readlines()
+ print(f'\nThere are {len(taxa)} codes before uniquifying\n\n')
+ unique_lines = {line.split(', ')[-1] : line.split(', ')[0:-1] for line in taxa}#makes dictionary of SRR/GCA:other info to uniquify the codes
+ print(f'\nYou have {len(unique_lines)} unique codes... writing them to unique_taxa.csv')
+
+ with open ('unique_taxa.csv', 'w') as o:#start csv of unique codes
+ for gca, other in unique_lines.items():#parse uniquified dictionary
+ o.write(f'{(", ").join(other)}, {gca}')#write out (use join to convert the list containing other info to a string)
+
+
+
+if __name__ == '__main__':
+ get_args()