# Last updated 2/23/2022 # Authors: Jean-David Grattepanche and Auden Cote-L'Heureux # This script is intended to remove intra-plate contamination # by removing sequences with low coverage relative to other # very similar sequences from samples sequenced on the same # plate. This script is optional, but to be run as part of the # EukPhylo Part 1 pipeline using the script wrapper.py # The specifics of parameters are described below and include removing seqs 1/10 # the coverage of the most highly expressed, and keeping all seqs with coverage >50. # All of these parameters can be changed by users. # Before running this script, you must run Script 1a. The default # clustering parameters are below, decided upon after manual inspection # of results from sample data under multiple parametrizations, but are # free to be changed by the user. #Dependencies import sys import os import re import time import string import os.path from Bio import SeqIO from sys import argv #Holds a list of all taxon names listtaxa=[] #Clustering parameters toosim = 0.99 seqcoverage = 0.7 #Group all sequences across all samples into one fasta file, which will then be clustered. def merge_files(folder, minlen, conspecific_names): mergefile = open('/'.join(folder.split('/')[:-1]) + '/forclustering.fasta','w+') print("MERGE following files") for taxafile in os.listdir(folder): if taxafile[0] != ".": listtaxa.append(taxafile.split('.' + str(minlen) + 'bp')[0]) for line2 in SeqIO.parse(folder+'/'+taxafile, 'fasta'): if int(len(str(line2.seq))) >= int(minlen): mergefile.write('>'+taxafile.split('.' + str(minlen) + 'bp')[0] + '_' + line2.description + '\n' + str(line2.seq) + '\n') else: print(line2, " is too short") mergefile.close() sort_cluster(folder, listtaxa, minlen, conspecific_names) #Cluster all sequences across all samples using Vsearch def sort_cluster(folder, listtaxa, minlen, conspecific_names): if not os.path.exists('/'.join(folder.split('/')[:-1]) + '/clusteringresults_vsearch/'): os.makedirs('/'.join(folder.split('/')[:-1]) + '/clusteringresults_vsearch/') fastalist = []; fastadict= {} conspecific_names_dict = { line.split('\t')[0] : line.split('\t')[1].strip() for line in open(conspecific_names) } print('Creating a dictionnary of sequences\n') for record in SeqIO.parse(open('/'.join(folder.split('/')[:-1]) + '/forclustering.fasta','r'),'fasta'): if record.id[:10] not in conspecific_names_dict: print('\nError in cross-plate contamination assessment: the ten-digit code ' + record.id[:10] + ' is not found in the conspecific names file. Please check that this file is correct and try again.\n') quit() IDL = record.description, int(record.description.split('_Cov')[1].replace('\n','')) fastalist.append(IDL) fastadict[record.description] = record.seq print("\nClustering sequences that overlap at least 70%") #Cluster at 99% identity over 70% of the length os.system('vsearch --cluster_fast ' + '/'.join(folder.split('/')[:-1]) + '/forclustering.fasta --strand both --query_cov '+str(seqcoverage)+' --id '+str(toosim) +' --uc ' + '/'.join(folder.split('/')[:-1]) + '/clusteringresults_vsearch/results_forclustering.uc --threads 60' ) cluster_output = '/'.join(folder.split('/')[:-1]) + '/clusteringresults_vsearch/results_forclustering.uc' out2 = open('/'.join(folder.split('/')[:-1]) + '/fastatokeep.fas','w+') out3 = open('/'.join(folder.split('/')[:-1]) + '/fastatoremoved.fas','w+') out4 = open('/'.join(folder.split('/')[:-1]) + '/fastatoremoved.uc','w+') print("Creating a dictionary with clustering results\n") clustdict= {}; clustlist = []; allseq = []; clustline = {}; list= []; i=0; j=0 for row2 in open(cluster_output, 'r'): if row2.split('\t')[0] == 'C' and int(row2.split('\t')[2]) < 2: # keep all unique sequences out2.write('>'+row2.split('\t')[8] + '\n' + str(fastadict[row2.split('\t')[8]])+ '\n') if row2.split('\t')[0] == 'C' and int(row2.split('\t')[2]) > 1: # create another dictionary clustdict.setdefault(row2.split('\t')[8], [row2.split('\t')[8]]) clustlist.append(row2.split('\t')[8]) for row3 in open(cluster_output, 'r'): if row3.split('\t')[0] == 'H': clustdict[row3.split('\t')[9].replace('\n','')].append(row3.split('\t')[8].replace('\n','')) clustline[row3.split('\t')[8].replace('\n','')] = row3.replace('\n','') clustline[row3.split('\t')[9].replace('\n','')] = row3.replace('\n','') print("Parsing the clusters: keeping seed sequences (highest coverage) for each cluster") #For each cluster for clust in clustlist: #Define the highest covered sequence in the cluster as the 'master,' against which all #more lowly covered sequences will be compared. list = sorted(clustdict[clust], reverse = True, key=lambda x: int(x.split('_Cov')[1])) master = list[0] Covmaster = int(list[0].split('_Cov')[1]) master8dig = ('_').join(list[0].split('_')[0:3])[:-2] #For each sequence that is not the highest covered sequence in the cluster for seq in list: clustered = seq.replace('\n','') Covclustered = int(clustered.split('_Cov')[1]) clustered8dig = ('_').join(clustered.split('_')[0:3])[:-2] #Keep any sequence if it has more than 1/10 the coverage of the highest covered sequence in the cluster if float(Covmaster/Covclustered) < 10: out2.write('>'+clustered + '\n' + str(fastadict[clustered])+ '\n') i +=1 #Don't remove a sequence if it is from the same taxon as the highest covered sequence in the cluster elif conspecific_names_dict[master[:10]] == conspecific_names_dict[clustered[:10]]: out2.write('>'+clustered + '\n' + str(fastadict[clustered])+ '\n') i +=1 #Keep any sequence with coverage >= 50 elif Covclustered >= 50: out2.write('>'+clustered + '\n' + str(fastadict[clustered])+ '\n') i +=1 #Otherwise, remove the lower covered sequence else: j +=1 out4 = open('/'.join(folder.split('/')[:-1]) + '/fastatoremoved.uc','a') out3.write('>'+clustered + '\n' + str(fastadict[clustered])+ '\n') print(clustline[clustered],'\t' , master ) out4.write(clustline[clustered]+ '\t' + master + '\n') out4.close() print('there are ', str(i),' sequences kept and ',str(j),' sequences removed') out2.close() out3.close() splittaxa(folder, listtaxa, minlen) #Rewriting the files per taxon, minus the sequences removed by the similarity comparison def splittaxa(folder, listtaxa, minlen): for taxa in listtaxa: tax_sf_path = '/'.join(folder.split('/')[:-1]) + '/' + taxa + '/SizeFiltered/' os.system('mv ' + tax_sf_path + taxa + '.' + str(minlen) + 'bp.fasta' + ' ' + tax_sf_path + taxa + '.' + str(minlen) + 'bp.preXPlate.fasta') with open(tax_sf_path + taxa + '.' + str(minlen) + 'bp.fasta','w') as o: for kept in SeqIO.parse('/'.join(folder.split('/')[:-1]) + '/fastatokeep.fas','fasta'): if taxa in kept.description: o.write('>' + kept.description.replace(taxa + '_', '') + '\n' + str(kept.seq) + '\n') os.system('mv ' + '/'.join(folder.split('/')[:-1]) + '/fastatokeep.fas ' + '/'.join(folder.split('/')[:-1]) + '/clusteringresults_vsearch/') os.system('mv ' + '/'.join(folder.split('/')[:-1]) + '/fastatoremoved.fas ' + '/'.join(folder.split('/')[:-1]) + '/clusteringresults_vsearch/') os.system('mv ' + '/'.join(folder.split('/')[:-1]) + '/fastatoremoved.uc ' + '/'.join(folder.split('/')[:-1]) + '/clusteringresults_vsearch/') os.system('mv ' + '/'.join(folder.split('/')[:-1]) + '/forclustering.fasta ' + '/'.join(folder.split('/')[:-1]) + '/clusteringresults_vsearch/') def main(): script, folder, minlen, conspecific_names = argv merge_files(folder, minlen, conspecific_names) main()