''' #Author, date: Elinor Sterner, Feb 2023 #Intent: To grab recent assemblies (since 2020) and GCA codes. #Dependencies: Python3, Biopython #Inputs: Folder named 'unique_taxon_lists' with files of keywords by major clade (separated by new lines). #Outputs: File of species, IDs, and GCA or SRR codes AND a file with uniquified codes. #Example: python Query_SRA_egs.py -t (transcriptome, SRA db) or -g (genome, assembly db) ''' from Bio import Entrez from Bio import SeqIO import os import sys def get_args(): Entrez.email = "@smith.edu"#CHANGE UR EMAIL Entrez.tool = "Biopython_NCBI_Entrez_downloads.ipynb" if len(sys.argv) < 2: print(f'enter -t or -g in command line to choose genomes (-g) or transcriptomes (-t)') if '-t' in sys.argv: data_type = False elif '-g' in sys.argv: data_type = True with open('RecentIDs.csv', 'w') as o:#starts output file and writes header o.write('major clade, keyword, species, ID, experiment, sequencing technology, GCA/SRR,\n') get_keywords(data_type) def get_keywords(data_type): for file in os.listdir('unique_taxon_lists'): if file.endswith('_unique.csv'):#put name of file to look at here. or only .csv to look at all of them with open(f'unique_taxon_lists/{file}', 'r') as lines:#read each file mc = file.split("_unique.csv")[0] print(f'Searching taxonomic names in {mc}\n\n') for line in lines.readlines():#iterate file keyword = line.strip()#keyword for genbank search is each word in the files if data_type == False: fetch_SRA(mc, keyword) if data_type == True: fetch_CDS(mc, keyword) write_unique_codes() def fetch_CDS(mc, keyword):#searches your keywords in the assembly database print(f'\nGrabbing recent CDSs') all_stuff = []#initiate list, will put genbank codes into this #get IDs of assemblies for keyword since 2020. Returns multiple IDs handle = Entrez.esearch(db="assembly", term=keyword + "[Organism:exp]" + "2020 [SeqReleaseDate]:3000", retmax=100) id_record = Entrez.read(handle) print(f'There are {len(id_record["IdList"])} assemblies labeled as {keyword} in genbank since 2020\nFetching IDs and GCAs\n') #Iterate through list of IDs given above, seach for their associated GCAs. Only one GCA for each ID, and each corresponds to 1 individual sequenced for tax_id in id_record['IdList']: handle = Entrez.esummary(db="assembly", id=tax_id, retmode="text") gca_records = Entrez.read(handle, validate=False) handle.close() #parse the output (its really awful. pythonic turduken: dict(list(str(dict))) type deal) for record in gca_records['DocumentSummarySet']['DocumentSummary']: sp = record['Organism'] gca=record['AssemblyAccession'] stuff = f'{mc}, {keyword}, {sp},{tax_id}, , ,{gca}' all_stuff.append(stuff) write_to_csv(all_stuff)#send this new info to be added to output sheet def fetch_SRA(mc, keyword):#searches your keywords in the SRA db all_stuff = [] print(f'\nGrabbing recent SRRs') # get IDs from taxonomies handle = Entrez.esearch(db="sra", term=keyword + "[Organism:exp]"+ " 2020:2023[PDAT]", retmax=100) id_record = Entrez.read(handle, validate = False) print(f'There are {len(id_record["IdList"])} SRAs labeled as {keyword} in genbank since 2020\nFetching SRAs\n') #get SRRs for taxonomy for rec in id_record['IdList']:#iterates through all of the IDs for the taxonomy tax_id = rec handle = Entrez.esummary(db="sra", id=tax_id) srr_records = Entrez.read(handle)#parse genbank info #parse out all information needed from genbank info sp = srr_records[0]['ExpXml'].split('ScientificName="')[1].split('"')[0]#extract species from genbank info srr = srr_records[0]['Runs'].split('"')[1]#extract srr from genbank info seq_type = srr_records[0]['ExpXml'].split('')[1].split('')[0]#parse to "library_strategy" parameter to check if its amplicon machine = srr_records[0]['ExpXml'].split('')[0]#get the type of sequencing machine used if 'AMPLICON' not in seq_type: stuff = f'{mc}, {keyword}, {sp}, {tax_id}, {seq_type}, {machine}, {srr},'#write to comma separated string all_stuff.append(stuff) write_to_csv(all_stuff) def write_to_csv(data):#writes the output from fetch_SRA or fetch_CDS to a csv with open('RecentIDs.csv', 'a+') as o: for i in data: o.write(f'{i}\n') def write_unique_codes():#uniquify the list of IDs that the scipt grabbed. since we are searching all taxanomic levels, we query many repeats so this removes them. #Writing unique files with open('RecentIDs.csv', 'r') as o:# read file of all data taxa = o.readlines() print(f'\nThere are {len(taxa)} codes before uniquifying\n\n') unique_lines = {line.split(', ')[-1] : line.split(', ')[0:-1] for line in taxa}#makes dictionary of SRR/GCA:other info to uniquify the codes print(f'\nYou have {len(unique_lines)} unique codes... writing them to unique_taxa.csv') with open ('unique_taxa.csv', 'w') as o:#start csv of unique codes for gca, other in unique_lines.items():#parse uniquified dictionary o.write(f'{(", ").join(other)}, {gca}')#write out (use join to convert the list containing other info to a string) if __name__ == '__main__': get_args()