// $Id: bestGtrModelparams.cpp 2008-29-04 10:57:00Z nimrod $ #include "bestGtrModelParams.h" #include using namespace std; #include "bblEM.h" #include "bblEMProportionalEB.h" #include "bblLSProportionalEB.h" #include "numRec.h" #include "logFile.h" #include "bestAlpha.h" bestGtrModel::bestGtrModel(tree& et, // find best Gtr Model Params const sequenceContainer& sc, stochasticProcess& sp, const Vdouble * weights, const int maxTotalIterations, const MDOUBLE epsilonLikelihoodImprovment, const MDOUBLE epsilonLoglikelihoodForGTRParam, const MDOUBLE upperBoundGTRParam, const bool optimizeTree, const bool optimizeAlpha){ LOG(5,<<"Starting bestGtrModel: find Best replacement matrix parameters"<(sp.getPijAccelerator()->getReplacementModel()))->get_a2c(); MDOUBLE prev_a2g = (static_cast(sp.getPijAccelerator()->getReplacementModel()))->get_a2g(); MDOUBLE prev_a2t = (static_cast(sp.getPijAccelerator()->getReplacementModel()))->get_a2t(); MDOUBLE prev_c2g = (static_cast(sp.getPijAccelerator()->getReplacementModel()))->get_c2g(); MDOUBLE prev_c2t = (static_cast(sp.getPijAccelerator()->getReplacementModel()))->get_c2t(); MDOUBLE prev_g2t = (static_cast(sp.getPijAccelerator()->getReplacementModel()))->get_g2t(); MDOUBLE prevAlpha = epsilonLoglikeForBBL; for (int i=0; i < maxTotalIterations; ++i) { //optimize a2c newL = -brent(0.0, prev_a2c, upperBoundGTRParam, C_evalGTRParam(a2c,et,sc,sp,weights), epsilonLoglikelihoodForGTRParam, &_best_a2c); if (newL >= _bestL) { _bestL = newL; (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_a2c(_best_a2c);//safety } else {//likelihood went down! (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_a2c(prev_a2c); LOG(5,<<"likelihood went down in optimizing a2c"<= _bestL) { _bestL = newL; (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_a2t(_best_a2t);//safety } else {//likelihood went down! (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_a2t(prev_a2t); LOG(5,<<"likelihood went down in optimizing a2t"<= _bestL) { _bestL = newL; (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_a2g(_best_a2g);//safety } else {//likelihood went down! (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_a2g(prev_a2g); LOG(5,<<"likelihood went down in optimizing a2g"<= _bestL) { _bestL = newL; (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_c2g(_best_c2g);//safety } else {//likelihood went down! (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_c2g(prev_c2g); LOG(5,<<"likelihood went down in optimizing c2g"<= _bestL) { _bestL = newL; (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_c2t(_best_c2t);//safety } else {//likelihood went down! (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_c2t(prev_c2t); LOG(5,<<"likelihood went down in optimizing c2t"<= _bestL) { _bestL = newL; (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_g2t(_best_g2t);//safety } else {//likelihood went down! (static_cast(sp.getPijAccelerator()->getReplacementModel()))->set_g2t(prev_g2t); LOG(5,<<"likelihood went down in optimizing g2t"<(sp.distr()))->setAlpha(_bestAlpha); if (newL >= _bestL) { _bestL = newL; (static_cast(sp.distr()))->setAlpha(_bestAlpha); //safety } else {//likelihood went down! (static_cast(sp.distr()))->setAlpha(prevAlpha); LOG(5,<<"likelihood went down in optimizing alpha"< oldL+epsilonLikelihoodImprovment) { oldL = _bestL; prev_a2c = _best_a2c; prev_a2g = _best_a2g; prev_a2t = _best_a2t; prev_c2g = _best_c2g; prev_c2t = _best_c2t; prev_g2t = _best_g2t; prevAlpha = _bestAlpha; } else { break; } } } bestGtrModelProportional::bestGtrModelProportional(tree& et, // find best Gtr Model Params under a proportional model vector& sc, multipleStochasticProcess* msp, gammaDistribution* pProportionDist, Vdouble initLocalAlphas, Vdouble initLocala2cs, Vdouble initLocala2gs, Vdouble initLocala2ts, Vdouble initLocalc2gs, Vdouble initLocalc2ts, Vdouble initLocalg2ts, const MDOUBLE upperBoundOnLocalAlpha, const MDOUBLE initGlobalAlpha, const MDOUBLE upperBoundOnGlobalAlpha, const MDOUBLE upperBoundGTRParam, const int maxTotalIterations, const int maxBBLIterations, const bool optimizeSelectedBranches, const bool optimizeTree, const string branchLengthOptimizationMethod, const bool optimizeLocalParams, const bool optimizeGlobalAlpha, const Vdouble * weights, const MDOUBLE epsilonLikelihoodImprovment, const MDOUBLE epsilonLoglikelihoodForGTRParam, const MDOUBLE epsilonLoglikelihoodForLocalAlphaOptimization, const MDOUBLE epsilonLoglikelihoodForGlobalAlphaOptimization, const MDOUBLE epsilonLoglikelihoodForBBL){ LOG(5,<<"Starting bestGtrModelProportional"<getSPVecSize()); //doubleRep oldL(VERYSMALL);//DR //doubleRep newL;//DR MDOUBLE oldL = VERYSMALL; MDOUBLE newL; _bestLvec.resize(msp->getSPVecSize(),0.0); _bestLocalAlphaVec = initLocalAlphas; _bestGlobalAlpha = initGlobalAlpha; int spIndex; _best_a2cVec = current_a2cVec; _best_a2gVec = current_a2gVec; _best_a2tVec = current_a2tVec; _best_c2gVec = current_c2gVec; _best_c2tVec = current_c2tVec; _best_g2tVec = current_g2tVec; pProportionDist->setAlpha(_bestGlobalAlpha); for(spIndex = 0;spIndex < msp->getSPVecSize();++spIndex){ (static_cast(msp->getSp(spIndex)->distr()))->setAlpha(_bestLocalAlphaVec[spIndex]); (static_cast(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2c(_best_a2cVec[spIndex]); (static_cast(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2g(_best_a2gVec[spIndex]); (static_cast(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2t(_best_a2tVec[spIndex]); (static_cast(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_c2g(_best_c2gVec[spIndex]); (static_cast(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_c2t(_best_c2tVec[spIndex]); (static_cast(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_g2t(_best_g2tVec[spIndex]); } //first compute the likelihood; _bestLvec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(et,sc,msp,pProportionDist,weights); MDOUBLE ax_local = 0.0; MDOUBLE c_GTRParam_x = upperBoundGTRParam; MDOUBLE c_localAlpha_x = upperBoundOnLocalAlpha; for (int i=0; i < maxTotalIterations; ++i) { if(optimizeLocalParams){ for(spIndex = 0;spIndex < msp->getSPVecSize();++spIndex){ //optimize a2c MDOUBLE a2c_x = _best_a2cVec[spIndex]; newLvec[spIndex] = -brent(ax_local,a2c_x,c_GTRParam_x, C_evalGTRParamProportional(a2c,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights), epsilonLoglikelihoodForGTRParam, ¤t_a2cVec[spIndex]); if (newLvec[spIndex] >= _bestLvec[spIndex]) { _bestLvec[spIndex] = newLvec[spIndex]; _best_a2cVec[spIndex] = current_a2cVec[spIndex]; } else {//likelihood went down! LOG(2,<<"likelihood went down in optimizing a2c"<(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2c(_best_a2cVec[spIndex]);//safety //optimize a2t MDOUBLE a2t_x = _best_a2tVec[spIndex]; newLvec[spIndex] = -brent(ax_local,a2t_x,c_GTRParam_x, C_evalGTRParamProportional(a2t,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights), epsilonLoglikelihoodForGTRParam, ¤t_a2tVec[spIndex]); if (newLvec[spIndex] >= _bestLvec[spIndex]) { _bestLvec[spIndex] = newLvec[spIndex]; _best_a2tVec[spIndex] = current_a2tVec[spIndex]; } else {//likelihood went down! LOG(2,<<"likelihood went down in optimizing a2t"<(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2t(_best_a2tVec[spIndex]);//safety //optimize a2g MDOUBLE a2g_x = _best_a2gVec[spIndex]; newLvec[spIndex] = -brent(ax_local,a2g_x,c_GTRParam_x, C_evalGTRParamProportional(a2g,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights), epsilonLoglikelihoodForGTRParam, ¤t_a2gVec[spIndex]); if (newLvec[spIndex] >= _bestLvec[spIndex]) { _bestLvec[spIndex] = newLvec[spIndex]; _best_a2gVec[spIndex] = current_a2gVec[spIndex]; } else {//likelihood went down! LOG(2,<<"likelihood went down in optimizing a2g"<(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_a2g(_best_a2gVec[spIndex]);//safety //optimize c2g MDOUBLE c2g_x = _best_c2gVec[spIndex]; newLvec[spIndex] = -brent(ax_local,c2g_x,c_GTRParam_x, C_evalGTRParamProportional(c2g,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights), epsilonLoglikelihoodForGTRParam, ¤t_c2gVec[spIndex]); if (newLvec[spIndex] >= _bestLvec[spIndex]) { _bestLvec[spIndex] = newLvec[spIndex]; _best_c2gVec[spIndex] = current_c2gVec[spIndex]; } else {//likelihood went down! LOG(2,<<"likelihood went down in optimizing c2g"<(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_c2g(_best_c2gVec[spIndex]);//safety //optimize c2t MDOUBLE c2t_x = _best_c2tVec[spIndex]; newLvec[spIndex] = -brent(ax_local,c2t_x,c_GTRParam_x, C_evalGTRParamProportional(c2t,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights), epsilonLoglikelihoodForGTRParam, ¤t_c2tVec[spIndex]); if (newLvec[spIndex] >= _bestLvec[spIndex]) { _bestLvec[spIndex] = newLvec[spIndex]; _best_c2tVec[spIndex] = current_c2tVec[spIndex]; } else {//likelihood went down! LOG(2,<<"likelihood went down in optimizing c2t"<(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_c2t(_best_c2tVec[spIndex]);//safety //optimize g2t MDOUBLE g2t_x = _best_g2tVec[spIndex]; newLvec[spIndex] = -brent(ax_local,g2t_x,c_GTRParam_x, C_evalGTRParamProportional(g2t,et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights), epsilonLoglikelihoodForGTRParam, ¤t_g2tVec[spIndex]); if (newLvec[spIndex] >= _bestLvec[spIndex]) { _bestLvec[spIndex] = newLvec[spIndex]; _best_g2tVec[spIndex] = current_g2tVec[spIndex]; } else {//likelihood went down! LOG(2,<<"likelihood went down in optimizing g2t"<(msp->getSp(spIndex)->getPijAccelerator()->getReplacementModel()))->set_g2t(_best_g2tVec[spIndex]);//safety //optimize local alpha MDOUBLE localAlpha_x = _bestLocalAlphaVec[spIndex]; newLvec[spIndex] = -brent(ax_local,localAlpha_x,c_localAlpha_x, C_evalLocalAlpha(et,sc[spIndex],*msp->getSp(spIndex),pProportionDist,weights), epsilonLoglikelihoodForLocalAlphaOptimization, ¤tLocalAlphaVec[spIndex]); if (newLvec[spIndex] >= _bestLvec[spIndex]) { _bestLvec[spIndex] = newLvec[spIndex]; _bestLocalAlphaVec[spIndex] = currentLocalAlphaVec[spIndex]; } else {//likelihood went down! LOG(2,<<"likelihood went down in optimizing local alpha"<(msp->getSp(spIndex)->distr()))->setAlpha(_bestLocalAlphaVec[spIndex]); //safety } LOGnOUT(2,<<"Done with GTR local params optimization"<= sumVdouble(_bestLvec)) { _bestGlobalAlpha = currentGlobalAlpha; } else {//likelihood went down! LOG(2,<<"likelihood went down in optimizing global alpha"<setAlpha(_bestGlobalAlpha); //safety //whether or not likelihood has improved we need to update _bestLvec _bestLvec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(et,sc,msp,pProportionDist,weights); LOGnOUT(2,<<"Done with global alpha optimization"< oldL+epsilonLikelihoodImprovment) { //all params have already been updated oldL = sumVdouble(_bestLvec); } else { break; } LOGnOUT(4,<<"Done with optimization iteration "<