Katzlab dd76ab1d12 Added PTL2 Scripts
These are PTL2 files from Auden 2/9
2023-02-14 11:20:52 -05:00

140 lines
3.8 KiB
C++

// $Id: betaDistribution.cpp 3985 2008-05-11 11:00:44Z adido $
#include "betaDistribution.h"
#include "gammaUtilities.h"
#include "betaUtilities.h"
#include "errorMsg.h"
#include "logFile.h"
#include <cmath>
betaDistribution::betaDistribution()
{
_alpha = 0.0;
_beta = 0.0;
_boundary.resize(0,0);
_rates.resize(0,0);
_ratesProb.resize(0,0);
_globalRate = 1;//??? 0.5 or 1
_discretizationType = MEDIAN;
}
// note that the order of initalization makes a diffrence.
betaDistribution::betaDistribution(const betaDistribution& other) :
_boundary(other._boundary),
_alpha(other._alpha),
_beta(other._beta),
_rates(other._rates),
_ratesProb(other._ratesProb),
_globalRate(other._globalRate),
_discretizationType(other._discretizationType){
}
betaDistribution::betaDistribution(MDOUBLE alpha,MDOUBLE beta,int in_number_of_categories,discretizationType in_discretizationType) :distribution(){
_globalRate=1.0;
_discretizationType = in_discretizationType;
setBetaParameters(in_number_of_categories,alpha,beta);
}
betaDistribution::~betaDistribution() {
_boundary.clear();
_rates.clear();
_ratesProb.clear();
}
void betaDistribution::setAlpha(MDOUBLE in_alpha) {
if (in_alpha == _alpha)
return;
setBetaParameters(categories(), in_alpha, _beta);
}
void betaDistribution::setBeta(MDOUBLE in_beta) {
if (in_beta == _beta)
return;
setBetaParameters( categories(), _alpha, in_beta);
}
void betaDistribution::setDiscretizationType(discretizationType in_discretizationType) {
if (in_discretizationType == _discretizationType)
return;
_discretizationType = in_discretizationType;
if (categories() > 1)
fill_rates();
}
void betaDistribution::change_number_of_categories(int in_number_of_categories) {
if (in_number_of_categories == categories())
return;
setBetaParameters( in_number_of_categories, _alpha, _beta);
}
void betaDistribution::setBetaParameters(int in_number_of_categories, MDOUBLE in_alpha, MDOUBLE in_beta) {
if ((in_alpha == _alpha) && (in_beta == _beta) && (in_number_of_categories == categories()))
return;
if (in_alpha < MINIMUM_ALPHA_PARAM)
in_alpha = MINIMUM_ALPHA_PARAM;// when alpha is very small there are underflaw problems
if (in_beta < MINIMUM_ALPHA_PARAM)
in_beta = MINIMUM_ALPHA_PARAM;// when beta is very small there are underflaw problems
_alpha = in_alpha;
_beta = in_beta;
_rates.clear();
_rates.resize(in_number_of_categories);
_ratesProb.clear();
_ratesProb.resize(in_number_of_categories, 1.0/in_number_of_categories);
_boundary.clear();
_boundary.resize(in_number_of_categories+1);
if (in_number_of_categories==1) {
_rates[0] = 1.0;
return;
}
if (categories() > 1) {
fill_rates();
return ;
}
}
int betaDistribution::fill_rates() {
fill_boundaries();
int i;
//LOG(5,<<endl<<" alpha = "<<_alpha<<" beta = "<< _beta<<endl);
//for (i=0; i<=categories(); ++i) cout<<endl<<_boundary[i];
//LOG(5,<<"\n====== the r categories are =====\n");
for (i=0; i<categories(); ++i) {
if (_discretizationType == MEAN)
_rates[i]=computeAverage_r(_boundary[i], _boundary[i+1], _alpha, _beta, categories());
else //_discretizationType == MEDIAN
_rates[i] =inverseCDFBeta(_alpha, _beta,static_cast<MDOUBLE>(i*2 +1)/(2*categories()));
//LOG(5,<<_rates[i]<<endl);
}
//LOG(5,<<endl<<_alpha<<endl);
return 0;
}
int betaDistribution::fill_boundaries() {
int i;
//LOG(5,<<endl<<"========BOUNDARY============="<<endl);
for (i=1; i<categories(); ++i)
{
_boundary[i]=inverseCDFBeta(_alpha, _beta,static_cast<MDOUBLE>(i)/categories());
//LOG(5,<<"_boundary[ "<<i<<"] ="<<_boundary[i]<<endl);
}
_boundary[0]=0;
_boundary[i]=1;
return 0;
}
const MDOUBLE betaDistribution::getCumulativeProb(const MDOUBLE x) const
{//
//since r~gamma(alpha, beta) then beta*r~ gamma(alpha,1)=gammp
//here we assume alpha=beta
return incompleteBeta(_alpha,_beta,x);
}