Katzlab dd76ab1d12 Added PTL2 Scripts
These are PTL2 files from Auden 2/9
2023-02-14 11:20:52 -05:00

126 lines
4.1 KiB
C++

// $Id: ussrvModel.cpp 962 2006-11-07 15:13:34Z privmane $
#include "ussrvModel.h"
ussrvModel::ussrvModel(const stochasticProcess& baseSp, const stochasticProcessSSRV& ssrvSp, const MDOUBLE& f)
: _f(f),_baseSp(NULL),_ssrvSp(NULL)
{
_baseSp = new stochasticProcess(baseSp);
_ssrvSp = new stochasticProcessSSRV(ssrvSp);
// get alpha from sp
replacementModelSSRV* pMulRM = static_cast<replacementModelSSRV*>(_ssrvSp->getPijAccelerator()->getReplacementModel());
_alpha = static_cast<gammaDistribution*>(pMulRM->getDistribution())->getAlpha();
// check that alpha is equal the baseSp alpha
MDOUBLE baseSpAlpha = static_cast<gammaDistribution*>(baseSp.distr())->getAlpha();
if (_alpha != baseSpAlpha)
errorMsg::reportError("Error in the constructor of ussrvModel. alpha of the ssrv stochastic process is different from that of the base model");
}
ussrvModel::~ussrvModel()
{
if (_baseSp) delete _baseSp;
if (_ssrvSp) delete _ssrvSp;
}
ussrvModel::ussrvModel(const ussrvModel& other)
{
_f = other._f;
_baseSp = new stochasticProcess(*other._baseSp);
_ssrvSp = new stochasticProcessSSRV(*other._ssrvSp);
}
ussrvModel& ussrvModel::operator=(const ussrvModel& other)
{
if (_baseSp) delete _baseSp;
if (_ssrvSp) delete _ssrvSp;
_f = other._f;
_alpha = other._alpha;
_baseSp = new stochasticProcess(*other._baseSp);
_ssrvSp = new stochasticProcessSSRV(*other._ssrvSp);
return *this;
}
void ussrvModel::updateAlpha(const MDOUBLE& alpha)
{
_alpha = alpha;
if (alpha<0)
{
LOG(4, << "ussrvModel::updateAlpha , alpha is < 0 " << endl);
return;
}
// update alpha of the ssrv model
replacementModelSSRV* pMulRM = static_cast<replacementModelSSRV*>(_ssrvSp->getPijAccelerator()->getReplacementModel());
gammaDistribution* gammaDist = static_cast<gammaDistribution*>(pMulRM->getDistribution());
gammaDist->setAlpha(alpha);
pMulRM->updateQ();
// update alpha of the base model
(static_cast<gammaDistribution*>(_baseSp->distr()))->setAlpha(alpha);
}
void ussrvModel::updateNu(const MDOUBLE& nu)
{
if (nu<0)
{
LOG(4,<<"ussrvModel::updateNu , nu is < 0 " <<endl);
return;
}
static_cast<replacementModelSSRV*>(_ssrvSp->getPijAccelerator()->getReplacementModel())->setRateOfRate(nu);
}
MDOUBLE ussrvModel::getNu() const
{
return (static_cast<replacementModelSSRV*>(_ssrvSp->getPijAccelerator()->getReplacementModel())->getRateOfRate());
}
void ussrvModel::updateF(const MDOUBLE& f)
{
if ((f<0) || (f>1))
{
LOG(4,<<"ussrvModel::updateF , f must be between 0 to 1. f is: "<< f << endl);
return;
}
_f=f;
}
// In order for the branch lengths and the nu parameter to be meaningfull, one must normalize the
// matrices of both the replacement models (the base model and the ssrv model)
// so that f*Sigma[i](PiQij) + (1-f)*Sigma[i](P`iQ`ij) = 1 (for i!=j)
// where Q and P belong to the ssrv model, P` and Q` belong to the base model. (Q` doesn't include the rates)
// The normalization doesn't affect the likelihood.
// see below for more explanations.
// Theoretically, we should therefore calculate this weighted sumPijQij (Denote by x), and then:
// 1) devide nu by x.
// 2) devide all the rates (of the base model and of the ssrv model) by x.
// (this could be done using the _globalRate member of the gammaDistribution class)
// 3) multiply every branch length by x.
// Instead, we just report x, so that the user can do all this whenever he wishes to.
MDOUBLE ussrvModel::calcNormalizeFactor()
{
// calculate sumPijQij
MDOUBLE sumPijQij = 0.0;
int i;
// of the base model
int baseAlphabetSize = _baseSp->alphabetSize();
for (i=0; i < baseAlphabetSize; ++i)
sumPijQij-= _baseSp->freq(i) * _baseSp->dPij_dt(i,i,0);
sumPijQij*=(1-_f);
// of the ssrv model
sumPijQij+=_f*static_cast<replacementModelSSRV*>(_ssrvSp->getPijAccelerator()->getReplacementModel())->sumPijQij();
return sumPijQij;
}
// This is not done when using normal sp (instead of ussrvModel), since:
// average(rates)=1 -->
// (for 2 categories, f=0.5, 1-f =0.5) 0.5*r1*Sigma[i](PiQij) + 0.5*r2*Sigma[i](PiQij) = 1 -->
// (since (r1+r2)*0.5 = 1) Sigma[i](PiQij) = 1 . This is always true, and taken care of in the readMatrix
// method.