mirror of
http://43.156.76.180:8026/YuuMJ/EukPhylo.git
synced 2025-12-28 03:20:25 +08:00
247 lines
7.7 KiB
C++
247 lines
7.7 KiB
C++
// $Id: bestAlpha.h 10000 2011-11-12 18:20:12Z rubi $
|
|
|
|
#ifndef ___BEST_ALPHA
|
|
#define ___BEST_ALPHA
|
|
|
|
#include "definitions.h"
|
|
|
|
#include "likelihoodComputation.h"
|
|
#include "sequenceContainer.h"
|
|
#include "stochasticProcess.h"
|
|
#include "multipleStochasticProcess.h"
|
|
#include "gammaDistribution.h"
|
|
#include "tree.h"
|
|
#include "logFile.h"
|
|
|
|
#ifndef VERBOS
|
|
#define VERBOS
|
|
#endif
|
|
|
|
class bestAlphaFixedTree {
|
|
public:
|
|
explicit bestAlphaFixedTree(const tree& et,
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights=NULL,
|
|
const MDOUBLE upperBoundOnAlpha = 15,
|
|
const MDOUBLE epsilonAlphaOptimization = 0.01);
|
|
MDOUBLE getBestAlpha() {return _bestAlpha;}
|
|
MDOUBLE getBestL() {return _bestL;}
|
|
private:
|
|
MDOUBLE _bestAlpha;
|
|
MDOUBLE _bestL;
|
|
};
|
|
|
|
class bestAlphaAndBBL {
|
|
public:
|
|
explicit bestAlphaAndBBL(tree& et, //find Best Alpha and best BBL
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights=NULL,
|
|
const MDOUBLE initAlpha = 1.5,
|
|
const MDOUBLE upperBoundOnAlpha = 5.0,
|
|
const MDOUBLE epsilonLoglikelihoodForAlphaOptimization= 0.01,
|
|
const MDOUBLE epsilonLoglikelihoodForBBL= 0.05,
|
|
const int maxBBLIterations=10,
|
|
const int maxTotalIterations=5);
|
|
MDOUBLE getBestAlpha() {return _bestAlpha;}
|
|
MDOUBLE getBestL() {return _bestL;}
|
|
private:
|
|
MDOUBLE _bestAlpha;
|
|
MDOUBLE _bestL;
|
|
};
|
|
|
|
class bestAlphasAndBBLProportional {
|
|
public:
|
|
explicit bestAlphasAndBBLProportional(tree& et, //find Best Alphas (per gene - local and proportional factors - global) and best BBL
|
|
vector<sequenceContainer>& sc,
|
|
multipleStochasticProcess* msp,
|
|
gammaDistribution* pProportionDist,
|
|
Vdouble initLocalRateAlphas,
|
|
const MDOUBLE upperBoundOnLocalRateAlpha,
|
|
const MDOUBLE initGlobalRateAlpha,
|
|
const MDOUBLE upperBoundOnGlobalRateAlpha,
|
|
const int maxBBLIterations,
|
|
const int maxTotalIterations,
|
|
const bool optimizeSelectedBranches=false,
|
|
const bool optimizeTree = true,
|
|
const string branchLengthOptimizationMethod="bblLS",
|
|
const bool optimizeLocalAlpha = true,
|
|
const bool optimizeGlobalAlpha = true,
|
|
const Vdouble * weights=NULL,
|
|
const MDOUBLE epsilonLoglikelihoodForLocalRateAlphaOptimization= 0.01,
|
|
const MDOUBLE epsilonLoglikelihoodForGlobalRateAlphaOptimization= 0.01,
|
|
const MDOUBLE epsilonLoglikelihoodForBBL= 0.05);
|
|
MDOUBLE getBestLocalAlpha(int spIndex){return _bestLocalAlphaVec[spIndex];}
|
|
MDOUBLE getBestGlobalAlpha(){return _bestGlobalAlpha;}
|
|
Vdouble getBestL() {return _bestLvec;}
|
|
private:
|
|
Vdouble _bestLocalAlphaVec;
|
|
MDOUBLE _bestGlobalAlpha;
|
|
Vdouble _bestLvec;
|
|
};
|
|
|
|
class bestBetaAndBBL {
|
|
public:
|
|
explicit bestBetaAndBBL(tree& et, //find Best Beta and best BBL
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights=NULL,
|
|
const MDOUBLE initBeta = 1.5,
|
|
const MDOUBLE upperBoundOnBeta = 5.0,
|
|
const MDOUBLE epsilonLoglikelihoodForBetaOptimization= 0.01,
|
|
const MDOUBLE epsilonLoglikelihoodForBBL= 0.05,
|
|
const int maxBBLIterations=10,
|
|
const int maxTotalIterations=5);
|
|
MDOUBLE getBestBeta() {return _bestBeta;}
|
|
MDOUBLE getBestL() {return _bestL;}
|
|
private:
|
|
MDOUBLE _bestBeta;
|
|
MDOUBLE _bestL;
|
|
};
|
|
|
|
class bestAlphaAndBetaAndBBL {
|
|
public:
|
|
explicit bestAlphaAndBetaAndBBL(tree& et, //find Best Alpha and best BBL
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights=NULL,
|
|
const MDOUBLE initAlpha = 1.5,
|
|
const MDOUBLE initBeta = 1.5,
|
|
const MDOUBLE upperBoundOnAlpha = 5.0,
|
|
const MDOUBLE upperBoundOnBeta = 5.0,
|
|
const MDOUBLE epsilonLoglikelihoodForAlphaOptimization= 0.01,
|
|
const MDOUBLE epsilonLoglikelihoodForBetaOptimization = 0.01,
|
|
const MDOUBLE epsilonLoglikelihoodForBBL= 0.05,
|
|
const int maxBBLIterations=10,
|
|
const int maxTotalIterations=5);
|
|
MDOUBLE getBestAlpha() {return _bestAlpha;}
|
|
MDOUBLE getBestBeta() {return _bestBeta;}
|
|
MDOUBLE getBestL() {return _bestL;}
|
|
private:
|
|
MDOUBLE _bestAlpha;
|
|
MDOUBLE _bestBeta;
|
|
MDOUBLE _bestL;
|
|
};
|
|
|
|
|
|
class C_evalAlpha{
|
|
public:
|
|
C_evalAlpha( const tree& et,
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights = NULL)
|
|
: _et(et),_sc(sc),_weights(weights),_sp(sp){};
|
|
private:
|
|
const tree& _et;
|
|
const sequenceContainer& _sc;
|
|
const Vdouble * _weights;
|
|
stochasticProcess& _sp;
|
|
public:
|
|
MDOUBLE operator() (MDOUBLE alpha) {
|
|
if (_sp.categories() == 1) {
|
|
errorMsg::reportError(" one category when trying to optimize alpha");
|
|
}
|
|
(static_cast<generalGammaDistribution*>(_sp.distr()))->setAlpha(alpha);
|
|
|
|
MDOUBLE res = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(_et,_sc,_sp,_weights);
|
|
//LOG(5,<<" with alpha = "<<alpha<<" logL = "<<res<<endl);
|
|
#ifdef VERBOS
|
|
LOG(7,<<" while in brent: with alpha = "<<alpha<<" logL = "<<res<<endl);
|
|
#endif
|
|
return -res;
|
|
}
|
|
};
|
|
|
|
class C_evalLocalAlpha{
|
|
public:
|
|
C_evalLocalAlpha( const tree& et,
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const gammaDistribution* pProportionDist,
|
|
const Vdouble * weights = NULL)
|
|
: _et(et),_sc(sc),_weights(weights),_sp(sp),_pProportionDist(pProportionDist){};
|
|
private:
|
|
const tree& _et;
|
|
const sequenceContainer& _sc;
|
|
const Vdouble * _weights;
|
|
stochasticProcess& _sp;
|
|
const gammaDistribution* _pProportionDist;
|
|
public:
|
|
MDOUBLE operator() (MDOUBLE alpha) {
|
|
if (_sp.categories() == 1) {
|
|
errorMsg::reportError("one category when trying to optimize local alpha");
|
|
}
|
|
(static_cast<gammaDistribution*>(_sp.distr()))->setAlpha(alpha);
|
|
vector<sequenceContainer> tmpScVec;
|
|
tmpScVec.push_back(_sc);
|
|
vector<stochasticProcess> tmpSpVec;
|
|
tmpSpVec.push_back(_sp);
|
|
multipleStochasticProcess * tmpMsp = new multipleStochasticProcess();
|
|
tmpMsp->setSpVec(tmpSpVec);
|
|
Vdouble likeVec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(_et,tmpScVec,tmpMsp,_pProportionDist);
|
|
MDOUBLE res = likeVec[0];
|
|
delete(tmpMsp);
|
|
LOG(5,<<" with local alpha = "<<alpha<<" logL = "<<res<<endl);
|
|
return -res;
|
|
}
|
|
};
|
|
|
|
class C_evalGlobalAlpha{
|
|
public:
|
|
C_evalGlobalAlpha( const tree& et,
|
|
vector<sequenceContainer>& sc,
|
|
multipleStochasticProcess* msp,
|
|
gammaDistribution* pProportionDist,
|
|
const Vdouble * weights = NULL)
|
|
: _et(et),_sc(sc),_weights(weights),_msp(msp),_pProportionDist(pProportionDist){};
|
|
private:
|
|
const tree& _et;
|
|
vector<sequenceContainer>& _sc;
|
|
const Vdouble * _weights;
|
|
multipleStochasticProcess* _msp;
|
|
gammaDistribution* _pProportionDist;
|
|
public:
|
|
MDOUBLE operator() (MDOUBLE alpha) {
|
|
if (_pProportionDist->categories() < 1) {
|
|
errorMsg::reportError(" less than one category when trying to optimize global alpha");
|
|
}
|
|
_pProportionDist->setAlpha(alpha);
|
|
Vdouble likeVec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(_et,_sc,_msp,_pProportionDist);
|
|
MDOUBLE res = sumVdouble(likeVec);
|
|
LOG(5,<<" with global alpha = "<<alpha<<" logL = "<<res<<endl);
|
|
return -res;
|
|
}
|
|
};
|
|
|
|
class C_evalBeta{
|
|
public:
|
|
C_evalBeta( const tree& et,
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights = NULL)
|
|
: _et(et),_sc(sc),_weights(weights),_sp(sp){};
|
|
private:
|
|
const tree& _et;
|
|
const sequenceContainer& _sc;
|
|
const Vdouble * _weights;
|
|
stochasticProcess& _sp;
|
|
public:
|
|
MDOUBLE operator() (MDOUBLE beta) {
|
|
if (_sp.categories() == 1) {
|
|
errorMsg::reportError(" one category when trying to optimize beta");
|
|
}
|
|
(static_cast<generalGammaDistribution*>(_sp.distr()))->setBeta(beta);
|
|
|
|
MDOUBLE res = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(_et,_sc,_sp,_weights);
|
|
//LOG(5,<<" with alpha = "<<alpha<<" logL = "<<res<<endl);
|
|
#ifdef VERBOS
|
|
LOG(7,<<" while in brent: with beta = "<<beta<<" logL = "<<res<<endl);
|
|
#endif
|
|
return -res;
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|