EukPhylo/PTL2/Scripts/contamination.py
Auden Cote-L'Heureux 9844842aed
Add files via upload
2024-02-07 11:23:49 -05:00

422 lines
18 KiB
Python

#Updated by ACL on 1/16 to fix subsisters
import os, sys, re
from Bio import SeqIO
import ete3
import guidance
import trees
from statistics import mean
def get_newick(fname):
newick = ''
for line in open(fname):
line = line.split(' ')[-1]
if(line.startswith('(') or line.startswith('tree1=')):
newick = line.split('tree1=')[-1].replace("'", '').replace('\\', '')
return newick
#This function reroots the tree on the largest Ba/Za clade. If there is no prokaryote clade,
#it roots on the largest Op clade, then Pl, then Am, then Ex, then Sr.
def reroot(tree):
#This nested function returns the largest clade of a given taxonomic group
def get_best_clade(taxon):
best_size = 0; best_clade = []; seen_leaves = []
#Traverse all nodes
for node in tree.traverse('levelorder'):
#If the node is big enough and not subsumed by a node we've already accepted
if len(node) >= 3 and len(list(set(seen_leaves) & set([leaf.name for leaf in node]))) == 0:
leaves = [leaf.name for leaf in node]
#Create a record of leaves that belong to the taxonomic group
target_leaves = set()
for leaf in leaves[::-1]:
if leaf[:2] in taxon:
target_leaves.add(leaf[:10])
leaves.remove(leaf)
#If this clade is better than any clade we've seen before, grab it
if len(target_leaves) > best_size and len(leaves) <= 2:
best_clade = node
best_size = len(target_leaves)
seen_leaves.extend([leaf.name for leaf in node])
return best_clade
#Get the biggest clade for each taxonomic group (stops once it finds one)
for taxon in [('Ba', 'Za'), ('Op'), ('Pl'), ('Am'), ('Ex'), ('Sr')]:
clade = get_best_clade(taxon)
if len([leaf for leaf in clade if leaf.name[:2] in taxon]) > 3:
tree.set_outgroup( clade)
break
return tree
def get_subtrees(args, file):
newick = get_newick(file)
tree = ete3.Tree(newick)
try:
tree = reroot(tree)
except:
print('\nUnable to re-root the tree ' + file + ' (maybe it had only 1 major clade, or an inconvenient polytomy). Skipping this step and continuing to try to grab robust clades from the tree.\n')
exceptions = []
if args.clade_grabbing_exceptions != None:
if os.path.isfile(args.clade_grabbing_exceptions):
exceptions = [line.strip() for line in open(args.clade_grabbing_exceptions)]
else:
print('\nError: it looks like you tried to input a clade grabbing exceptions file, but it could not be found.\n')
exit()
rules_per_clade = []
if args.clade_grabbing_rules_file != None:
if os.path.isfile(args.clade_grabbing_rules_file):
lines = [line.strip().split('\t') for line in open(args.clade_grabbing_rules_file) if len(line.strip().split('\t')) == 5]
for line in lines:
if line[4].lower() == 'na':
rules_per_clade.append({ 'target_taxa' : line[0], 'num_contams' : int(line[1]), 'min_target_presence' : int(line[2]), 'required_taxa' : line[3], 'required_taxa_num' : 0 })
else:
rules_per_clade.append({ 'target_taxa' : line[0], 'num_contams' : int(line[1]), 'min_target_presence' : int(line[2]), 'required_taxa' : line[3], 'required_taxa_num' : int(line[4]) })
else:
print('\nError: it looks like you tried to input a clade grabbing rules file, but it could not be found.\n')
exit()
else:
rules_per_clade.append({ 'target_taxa' : args.target_taxa, 'num_contams' : args.num_contams, 'min_target_presence' : args.min_target_presence, 'required_taxa' : args.required_taxa, 'required_taxa_num' : args.required_taxa_num })
for clade in rules_per_clade:
if os.path.isfile(clade['target_taxa']):
try:
clade['target_taxa'] = [l.strip() for l in open(clade['target_taxa']).readlines() if l.strip() != '']
except AttributeError:
print('\nError: invalid "target_taxa" input (' + clade['target_taxa'] + '). This must be a comma-separated list of any number of digits/characters to describe focal taxa (e.g. Sr_ci_S,Am_t), or a file with the extension .txt containing a list of complete or partial taxon codes. All sequences containing the complete/partial code will be identified as belonging to target taxa.\n')
exit()
else:
clade['target_taxa'] = [code.strip() for code in clade['target_taxa'].split(',') if code.strip() != '']
if clade['required_taxa'] != None:
if os.path.isfile(clade['required_taxa']):
try:
clade['required_taxa'] = [l.strip() for l in open(clade['required_taxa']).readlines() if l.strip() != '']
except AttributeError:
print('\nError: invalid "required_taxa" argument. This must be a comma-separated list of any number of digits/characters (e.g. Sr_ci_S,Am_t), or a file with the extension .txt containing a list of complete or partial taxon codes, to describe taxa that MUST be present in a clade for it to be selected (e.g. you may want at least one whole genome).\n')
else:
clade['required_taxa'] = [code.strip() for code in clade['required_taxa'].split(',') if code.strip() != '' and code.strip().lower() != 'na']
clade['target_taxa'] = clade['target_taxa'] + clade['required_taxa']
else:
clade['required_taxa'] = []
#Creating a record of selected subtrees, and all of the leaves in those subtrees
selected_leaves = []
for clade in rules_per_clade:
seen_leaves = []
#Iterating through all nodes in tree, starting at "root" then working towards leaves
for node in tree.traverse('levelorder'):
#If a node is large enough and is not contained in an already selected clade
if len(node) >= clade['min_target_presence'] and len(list(set(seen_leaves) & set([leaf.name for leaf in node]))) == 0:
leaves = [leaf.name for leaf in node]
#Accounting for cases where e.g. one child is a contaminant, and the other child is a good clade with 1 fewer than the max number of contaminants
children_keep = 0
for child in node.children:
for code in clade['target_taxa']:
taken = False
for leaf in child:
if leaf.name.startswith(code):
children_keep += 1
taken = True
break
if taken:
break
if children_keep == len(node.children):
#Creating a record of all leaves belonging to the target/"at least" group of taxa, and any other leaves are contaminants
target_leaves = set(); at_least_leaves = set(); target_leaves_full_names = []
for code in clade['target_taxa']:
for leaf in leaves[::-1]:
if leaf.startswith(code):
target_leaves.add(leaf[:10])
target_leaves_full_names.append(leaf)
for req in clade['required_taxa']:
if leaf.startswith(req):
at_least_leaves.add(leaf[:10])
break
leaves.remove(leaf)
#Grab a clade as a subtree if 1) it has enough target taxa; 2) it has enough "at least" taxa; 3) it does not have too many contaminants
if len(target_leaves) >= clade['min_target_presence'] and len(at_least_leaves) >= clade['required_taxa_num'] and ((clade['num_contams'] < 1 and len(leaves) <= clade['num_contams'] * len(target_leaves)) or len(leaves) <= clade['num_contams']):
selected_leaves.extend(target_leaves_full_names)
seen_leaves.extend([leaf.name for leaf in node])
all_clades = [clade for group in rules_per_clade for clade in group['target_taxa']]
seqs2keep = [leaf.name for leaf in tree if leaf.name in selected_leaves or not any([leaf.name.startswith(clade) for clade in all_clades]) or any([leaf.name.startswith(ex) for ex in exceptions])]
return seqs2keep
def get_sisters(args, file, sister_contam_per_tax, subsister_contam_per_tax):
seqs2remove = []
#Read the tree using ete3 and reroot it using the above function
newick = get_newick(file)
tree = ete3.Tree(newick)
try:
tree = reroot(tree)
except:
print('\nUnable to re-root the tree ' + file + ' (maybe it had only 1 major clade, or an inconvenient polytomy). Skipping this step and continuing to try to grab robust clades from the tree.\n')
mean_bl = mean([leaf.dist for leaf in tree])
all_taxa_in_tree = [leaf.name[:10] for leaf in tree]
coconts = { }
if args.cocontaminants != None:
if os.path.isfile(args.cocontaminants):
for line in open(args.cocontaminants):
line = line.strip().split('\t')
if len(line) == 2:
if line[0] in all_taxa_in_tree:
coconts.update({ line[0] : line[1] })
else:
print('\nERROR: It looks like you tried to input a co-contaminants file to the contamination loop, but the file could not be found.\n')
exit()
for tax in all_taxa_in_tree:
if tax not in coconts:
coconts.update({ tax : tax })
#For each sequence
for leaf in tree:
bad_sisters = { contam[0] : contam[1] for tax in sister_contam_per_tax for contam in sister_contam_per_tax[tax] if leaf.name.startswith(tax) }
bad_subsisters = [contam for tax in subsister_contam_per_tax for contam in subsister_contam_per_tax[tax] if leaf.name.startswith(tax)]
if len(bad_sisters) > 0 or len(bad_subsisters) > 0:
#This loop will keep moving towards the root of the tree until it finds a node that
#has leaves from a cell other than the one for which we are looking for sisters
parent_node = leaf; seen_taxa = {coconts[leaf.name[:10]]}; sisters = []
while len(seen_taxa) == 1:
parent_node = parent_node.up
for l2 in parent_node:
seen_taxa.add(coconts[l2.name[:10]])
if coconts[l2.name[:10]] != coconts[leaf.name[:10]]:
sisters.append(l2.name[:10])
#Create a record of the subsister sequences
sub_sisters = []
if args.subsister_rules != None:
new_parent_node = parent_node.up
for l2 in new_parent_node:
if l2.name not in [l.name for l in parent_node]:
sub_sisters.append(l2.name)
#Create a record of the sister sequences
sisters = list(dict.fromkeys(sisters))
sisters_removable = []; bls = []
for contam in bad_sisters:
for sister in sisters:
if sister.startswith(contam) and sister not in sisters_removable:
sisters_removable.append(sister)
bls.append(bad_sisters[contam])
subsisters_removable = []
for contam in bad_subsisters:
for sub_sister in sub_sisters:
if sub_sister.startswith(contam) and sub_sister not in subsisters_removable:
subsisters_removable.append(sub_sister)
if len(bls) > 0:
bl_rule_min = min(bls)
else:
bl_rule_min = 0
if len(sisters_removable) == len(sisters) and leaf.dist <= bl_rule_min*mean_bl and len(sisters_removable) > 0:
seqs2remove.append(leaf.name)
elif len(subsisters_removable) == len(sub_sisters) and len(subsisters_removable) > 0:
seqs2remove.append(leaf.name)
return [leaf.name for leaf in tree if leaf.name not in seqs2remove]
def write_new_preguidance(params, seqs2keep, seqs_per_og, tree_file):
if params.cl_exclude_taxa != None:
try:
exclude_taxa = list(dict.fromkeys([line.strip() for line in open(params.cl_exclude_taxa)]))
except (FileNotFoundError, TypeError) as e:
print('\nERROR: Unable to read the file listing taxa to exclude in the first iteration of the contamination loop (--cl_exclude_taxa). Please make sure that the path is correct and that the file is formatted correctly.\n\n' + str(e) + '\n')
exit()
else:
exclude_taxa = []
prefix = tree_file.split('.')[0]
seq_file = [file for file in seqs_per_og if file.startswith(prefix)]
if len(seq_file) == 0:
print('\nNo sequence file found for tree file ' + tree_file + '. Skipping this gene family.\n')
return None, []
elif len(seq_file) > 1:
print('\nMore than one sequence file found matching the tree file ' + tree_file + '. Please make your file names more unique: there should be one sequence file for every tree file, with a matching unique prefix (everything before the first "."). Skipping this gene family.\n')
return None, []
elif len(seq_file) == 1:
with open(params.output + '/Output/Pre-Guidance/' + seq_file[0], 'w') as o:
for rec in seqs_per_og[seq_file[0]]:
if rec in seqs2keep and rec[:10] not in exclude_taxa and rec[:2] not in exclude_taxa and rec[:5] not in exclude_taxa:
o.write('>' + rec + '\n' + seqs_per_og[seq_file[0]][rec] + '\n\n')
seqs_removed_from_og = [seq for seq in seqs_per_og[seq_file[0]] if seq not in seqs2keep]
return seq_file[0], seqs_removed_from_og
def cl_mafft(params):
for file in os.listdir(params.output + '/Output/Pre-Guidance'):
if file.split('.')[-1] in ('fasta', 'fas', 'faa'):
os.system('mafft ' + params.output + '/Output/Pre-Guidance/' + file + ' > ' + params.output + '/Output/NotGapTrimmed/' + file)
os.system('Scripts/trimal-trimAl/source/trimal -in ' + params.output + '/Output/NotGapTrimmed/' + file + ' -out ' + params.output + '/Output/Guidance/' + file.split('.')[0] + '.95gapTrimmed.fasta' + ' -gapthreshold 0.05 -fasta')
def cl_fasttree(params):
for file in os.listdir(params.output + '/Output/Guidance'):
if file.split('.')[-1] in ('fasta', 'fas', 'faa'):
os.system('FastTree ' + params.output + '/Output/Guidance/' + file + ' > ' + params.output + '/Output/Trees/' + file.split('.')[0] + '.FastTree.tre')
def run(params):
seqs_removed = []
completed_ogs = []
with open('SequencesRemoved_ContaminationLoop.txt', 'w') as o:
o.write('Sequence\tLoopRemoved\n')
for loop in range(params.nloops):
seqs_removed_loop = []
if params.start == 'raw':
seqs_per_og = { file : { rec.id : str(rec.seq) for rec in SeqIO.parse(params.output + '/Output/Pre-Guidance/' + file, 'fasta') } for file in os.listdir(params.output + '/Output/Pre-Guidance') if file.split('.')[-1] in ('fasta', 'fas', 'faa') }
elif params.start in ('unaligned', 'aligned', 'trees'):
seqs_per_og = { file : { rec.id : str(rec.seq).replace('-', '') for rec in SeqIO.parse(params.data + '/' + file, 'fasta') } for file in os.listdir(params.data) if file.split('.')[-1] in ('fasta', 'fas', 'faa') }
if loop == 0:
for file in os.listdir(params.data):
if file.split('.')[-1] in ('tre', 'tree', 'treefile'):
os.system('cp ' + params.data + '/' + file + ' ' + params.output + '/Output/Trees')
if loop > 0 or params.start == 'raw':
os.system('mv ' + params.output + '/Output/Pre-Guidance ' + params.output + '/Output/Pre-Guidance_' + str(loop))
os.mkdir(params.output + '/Output/Pre-Guidance')
if params.contamination_loop == 'clade':
for tree_file in os.listdir(params.output + '/Output/Trees'):
if tree_file.split('.')[-1] in ('tre', 'tree', 'treefile', 'nex') and tree_file not in completed_ogs:
seqs2keep = get_subtrees(params, params.output + '/Output/Trees/' + tree_file)
seq_file, seqs_removed_from_og = write_new_preguidance(params, seqs2keep, seqs_per_og, tree_file)
if len(seqs_removed_from_og) == 0:
completed_ogs.append(tree_file)
else:
seqs_removed_loop += [seq for seq in seqs_per_og[seq_file] if seq not in seqs2keep and seq not in seqs_removed]
elif params.contamination_loop == 'seq':
sister_contam_per_tax = { }
if params.sister_rules != None:
for line in open(params.sister_rules):
if line.strip().split('\t')[0] not in sister_contam_per_tax:
sister_contam_per_tax.update({ line.strip().split('\t')[0] : [] })
try:
sister_contam_per_tax[line.strip().split('\t')[0]].append((line.strip().split('\t')[1], float(line.strip().split('\t')[2])))
except ValueError:
sister_contam_per_tax[line.strip().split('\t')[0]].append((line.strip().split('\t')[1], float('inf')))
except IndexError:
if line.strip() != '':
print('\nWarning: the line "' + line.strip() + '" in the sister rules file could not be processed\n')
subsister_contam_per_tax = { }
if params.subsister_rules != None:
if os.path.isfile(params.subsister_rules):
for line in open(params.subsister_rules):
if line.strip().split('\t')[0] not in subsister_contam_per_tax and len(line.strip().split('\t')) == 2:
subsister_contam_per_tax.update({ line.strip().split('\t')[0] : [] })
subsister_contam_per_tax[line.strip().split('\t')[0]].append(line.strip().split('\t')[1])
else:
print('\nERROR: It looks like you tried to input a sub-sister rules file to the contamination loop, but the file could not be found.\n')
exit()
for tree_file in os.listdir(params.output + '/Output/Trees'):
if tree_file.split('.')[-1] in ('tre', 'tree', 'treefile', 'nex') and tree_file not in completed_ogs:
seqs2keep = get_sisters(params, params.output + '/Output/Trees/' + tree_file, sister_contam_per_tax, subsister_contam_per_tax)
seq_file, seqs_removed_from_og = write_new_preguidance(params, seqs2keep, seqs_per_og, tree_file)
if len(seqs_removed_from_og) == 0:
completed_ogs.append(tree_file)
else:
seqs_removed_loop += [seq for seq in seqs_per_og[seq_file] if seq not in seqs2keep and seq not in seqs_removed]
seqs_removed += seqs_removed_loop
with open(params.output + '/Output/SequencesRemoved_ContaminationLoop.txt', 'a') as o:
for seq in seqs_removed_loop:
o.write(seq + '\t' + str(loop) + '\n')
os.system('mv ' + params.output + '/Output/Trees ' + params.output + '/Output/Trees_' + str(loop))
os.mkdir(params.output + '/Output/Trees')
os.system('mv ' + params.output + '/Output/Guidance ' + params.output + '/Output/Guidance_' + str(loop))
os.mkdir(params.output + '/Output/Guidance')
os.system('mv ' + params.output + '/Output/NotGapTrimmed ' + params.output + '/Output/NotGapTrimmed_' + str(loop))
os.mkdir(params.output + '/Output/NotGapTrimmed')
params.start = 'unaligned'
params.end = 'trees'
params.tree_method = params.cl_tree_method
if params.cl_alignment_method == 'mafft_only':
cl_mafft(params)
else:
guidance.run(params)
if params.cl_tree_method == 'fasttree':
cl_fasttree(params)
else:
if 'iqtree' in params.cl_tree_method:
os.system('rm -r ' + params.output + '/Output/Intermediate/IQTree/*')
elif params.cl_tree_method == 'raxml':
os.system('rm -r ' + params.output + '/Output/Intermediate/RAxML/*')
trees.run(params)