EukPhylo/PTL2/Scripts-DEV/guidance.v2.02/libs/phylogeny/generalGammaDistribution.cpp
Katzlab dd76ab1d12 Added PTL2 Scripts
These are PTL2 files from Auden 2/9
2023-02-14 11:20:52 -05:00

116 lines
3.1 KiB
C++

// $Id: generalGammaDistribution.cpp 2768 2007-11-22 12:57:44Z osnatz $
#include "generalGammaDistribution.h"
#include "gammaUtilities.h"
#include "errorMsg.h"
#include "logFile.h"
#include <cmath>
generalGammaDistribution::generalGammaDistribution() :
_alpha(0.0),
_beta(0.0),
_globalRate(1.0)
{
_bonderi.resize(0,0);
_rates.resize(0,0);
_ratesProb.resize(0,0);
}
generalGammaDistribution::generalGammaDistribution(const generalGammaDistribution& other) :
_alpha(other._alpha),
_beta(other._beta),
_rates(other._rates),
_ratesProb(other._ratesProb),
_globalRate(other._globalRate),
_bonderi(other._bonderi)
{}
generalGammaDistribution::generalGammaDistribution(MDOUBLE alpha,MDOUBLE beta,int in_number_of_categories) :
_globalRate(1.0)
{
setGammaParameters(in_number_of_categories,alpha,beta);
}
void generalGammaDistribution::setAlpha(MDOUBLE in_alpha) {
if (in_alpha == _alpha)
return;
setGammaParameters(categories(), in_alpha, _beta);
}
void generalGammaDistribution::setBeta(MDOUBLE in_beta) {
if (in_beta == _beta)
return;
setGammaParameters( categories(), _alpha, in_beta);
}
void generalGammaDistribution::change_number_of_categories(int in_number_of_categories) {
if (in_number_of_categories == categories())
return;
setGammaParameters( in_number_of_categories, _alpha, _beta);
}
void generalGammaDistribution::setGammaParameters(int in_number_of_categories, MDOUBLE in_alpha, MDOUBLE in_beta) {
if ((in_alpha == _alpha) && (in_beta == _beta) && (in_number_of_categories == categories()))
return;
if (in_alpha < MINIMUM_ALPHA_PARAM)
in_alpha = MINIMUM_ALPHA_PARAM;// when alpha is very small there are underflaw problems
if (in_beta < MINIMUM_ALPHA_PARAM)
in_beta = MINIMUM_ALPHA_PARAM;// when beta is very small there are underflaw problems
_alpha = in_alpha;
_beta = in_beta;
_rates.clear();
_rates.resize(in_number_of_categories);
_ratesProb.clear();
_ratesProb.resize(in_number_of_categories, 1.0/in_number_of_categories);
_bonderi.clear();
_bonderi.resize(in_number_of_categories+1);
if (in_number_of_categories==1) {
_rates[0] = 1.0;
return;
}
if (categories() > 1) {
fill_mean();
return ;
}
}
void generalGammaDistribution::fill_mean() {
fill_bonderi();
int i;
//for (i=0; i<=categories(); ++i) cout<<endl<<bonderi[i];
//LOG(5,<<"\n====== the r categories are =====\n");
for (i=0; i<categories(); ++i) {
_rates[i]=the_avarage_r_in_category_between_a_and_b(_bonderi[i], _bonderi[i+1], _alpha, _beta, categories());
//LOG(5,<<meanG[i]<<endl);
}
//LOG(5,<<endl<<alpha<<endl);
//return 0;
}
void generalGammaDistribution::fill_bonderi() {
int i;
for (i=1; i<categories(); ++i)
{
_bonderi[i]=search_for_z_in_dis_with_any_beta(_alpha, _beta,static_cast<MDOUBLE>(i)/categories());
}
_bonderi[0]=0;
_bonderi[i]=VERYBIG/10000.0;// this is becuase we multiply bondei[i] by alpha or beta, and
// by this manipulation we avoid overflows...;
//return 0;
}
const MDOUBLE generalGammaDistribution::getCumulativeProb(const MDOUBLE x) const
{//
//since r~gamma(alpha, beta) then beta*r~ gamma(alpha,1)=gammp
//here we assume alpha=beta
return gammp(_alpha, x*_beta);
}