mirror of
http://43.156.76.180:8026/YuuMJ/EukPhylo.git
synced 2025-12-27 13:10:30 +08:00
174 lines
5.4 KiB
C++
174 lines
5.4 KiB
C++
// $Id: bestHKYparam.h 9992 2011-11-08 03:57:29Z rubi $
|
|
|
|
#ifndef ___BEST_HKY_PARAM
|
|
#define ___BEST_HKY_PARAM
|
|
|
|
#include "definitions.h"
|
|
|
|
#include "likelihoodComputation.h"
|
|
#include "sequenceContainer.h"
|
|
#include "stochasticProcess.h"
|
|
#include "gammaDistribution.h"
|
|
#include "tree.h"
|
|
#include "hky.h"
|
|
#include "multipleStochasticProcess.h"
|
|
|
|
class bestHkyParamFixedTree {
|
|
public:
|
|
explicit bestHkyParamFixedTree(const tree& et,
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights=NULL,
|
|
const MDOUBLE upperBoundOnHkyParam = 0.5,
|
|
const MDOUBLE epsilonHkyParamOptimization = 0.01);
|
|
MDOUBLE getBestHkyParam() {return _bestHkyParam;}
|
|
MDOUBLE getBestL() {return _bestL;}
|
|
private:
|
|
MDOUBLE _bestHkyParam;
|
|
MDOUBLE _bestL;
|
|
};
|
|
|
|
class bestHkyParamAndBBL {
|
|
public:
|
|
explicit bestHkyParamAndBBL(tree& et, //find Best HkyParam and best BBL
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights=NULL,
|
|
const MDOUBLE upperBoundOnHkyParam = 5.0,
|
|
const MDOUBLE epsilonHkyParamOptimization= 0.01,
|
|
const MDOUBLE epsilonLikelihoodImprovment= 0.05,
|
|
const int maxBBLIterations=10,
|
|
const int maxTotalIterations=5);
|
|
MDOUBLE getBestHkyParam() {return _bestHkyParam;}
|
|
MDOUBLE getBestL() {return _bestL;}
|
|
private:
|
|
MDOUBLE _bestHkyParam;
|
|
MDOUBLE _bestL;
|
|
};
|
|
|
|
class C_evalHkyParam{
|
|
public:
|
|
C_evalHkyParam( const tree& et,
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights = NULL)
|
|
: _et(et),_sc(sc),_weights(weights),_sp(sp){};
|
|
private:
|
|
const tree& _et;
|
|
const sequenceContainer& _sc;
|
|
const Vdouble * _weights;
|
|
stochasticProcess& _sp;
|
|
public:
|
|
MDOUBLE operator() (MDOUBLE HkyParam) {
|
|
(static_cast<hky*>(_sp.getPijAccelerator()->getReplacementModel()))->changeTrTv(HkyParam);
|
|
|
|
MDOUBLE res = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(_et,_sc,_sp,_weights);
|
|
//LOG(5,<<" with HkyParam = "<<HkyParam<<" logL = "<<res<<endl);
|
|
return -res;
|
|
}
|
|
};
|
|
|
|
class C_evalLocalHkyParam{
|
|
public:
|
|
C_evalLocalHkyParam( const tree& et,
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const gammaDistribution* pProportionDist,
|
|
const Vdouble * weights = NULL)
|
|
: _et(et),_sc(sc),_weights(weights),_sp(sp),_pProportionDist(pProportionDist){};
|
|
private:
|
|
const tree& _et;
|
|
const sequenceContainer& _sc;
|
|
const Vdouble * _weights;
|
|
stochasticProcess& _sp;
|
|
const gammaDistribution* _pProportionDist;
|
|
public:
|
|
MDOUBLE operator() (MDOUBLE HkyParam) {
|
|
(static_cast<hky*>(_sp.getPijAccelerator()->getReplacementModel()))->changeTrTv(HkyParam);
|
|
vector<sequenceContainer> tmpScVec;
|
|
tmpScVec.push_back(_sc);
|
|
vector<stochasticProcess> tmpSpVec;
|
|
tmpSpVec.push_back(_sp);
|
|
multipleStochasticProcess * tmpMsp = new multipleStochasticProcess();
|
|
tmpMsp->setSpVec(tmpSpVec);
|
|
Vdouble likeVec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(_et,tmpScVec,tmpMsp,_pProportionDist);
|
|
MDOUBLE res = likeVec[0];
|
|
delete(tmpMsp);
|
|
LOG(5,<<" with HkyParam = "<<HkyParam<<" logL = "<<res<<endl);
|
|
return -res;
|
|
}
|
|
};
|
|
|
|
class bestHkyParamAlphaAndBBL {
|
|
public:
|
|
explicit bestHkyParamAlphaAndBBL( //find best TrTv (=HkyParam), Alpha and best branch lengths
|
|
tree& et,
|
|
const sequenceContainer& sc,
|
|
stochasticProcess& sp,
|
|
const Vdouble * weights=NULL,
|
|
const int maxTotalIterations=5,
|
|
const MDOUBLE epsilonLikelihoodImprovment= 0.05,
|
|
const MDOUBLE epsilonHkyParamOptimization= 0.01,
|
|
const MDOUBLE epsilonAlphaOptimization= 0.01,
|
|
const MDOUBLE epsilonBBL= 0.01,
|
|
const MDOUBLE upperBoundOnHkyParam = 5.0,
|
|
const int maxBBLIterations=10,
|
|
const MDOUBLE initAlpha = 1.5,
|
|
const MDOUBLE upperBoundOnAlpha = 5.0);
|
|
|
|
MDOUBLE getBestHkyParam() {return _bestHkyParam;}
|
|
MDOUBLE getBestAlpha() {return _bestAlpha;}
|
|
MDOUBLE getBestL() {return _bestL;}
|
|
private:
|
|
MDOUBLE _bestHkyParam;
|
|
MDOUBLE _bestAlpha;
|
|
MDOUBLE _bestL;
|
|
};
|
|
|
|
|
|
class bestHkyParamAlphaAndBBLProportional {
|
|
public:
|
|
explicit bestHkyParamAlphaAndBBLProportional( //find best Kappa (=HkyParam), global Alpha, local Alpha, and best branch lengths
|
|
tree& et,
|
|
vector<sequenceContainer>& sc,
|
|
multipleStochasticProcess* msp,
|
|
gammaDistribution* pProportionDist,
|
|
Vdouble initLocalAlphas,
|
|
Vdouble initLocalKappas,
|
|
const MDOUBLE upperBoundOnLocalAlpha,
|
|
const MDOUBLE initGlobalAlpha,
|
|
const MDOUBLE upperBoundOnGlobalAlpha,
|
|
const MDOUBLE upperBoundOnHkyParam,
|
|
const int maxTotalIterations,
|
|
const int maxBBLIterations,
|
|
const bool optimizeSelectedBranches=false,
|
|
const bool optimizeTree = true,
|
|
const string branchLengthOptimizationMethod="bblLS",
|
|
const bool optimizeLocalParams = true,
|
|
const bool optimizeGlobalAlpha = true,
|
|
const Vdouble * weights=NULL,
|
|
const MDOUBLE epsilonLikelihoodImprovment= 0.05,
|
|
const MDOUBLE epsilonHkyParamOptimization= 0.01,
|
|
const MDOUBLE epsilonLocalAlphaOptimization= 0.01,
|
|
const MDOUBLE epsilonGlobalAlphaOptimization= 0.01,
|
|
const MDOUBLE epsilonBBL= 0.01);
|
|
|
|
MDOUBLE getBestHkyParam(int spIndex) {return _bestHkyParamVec[spIndex];}
|
|
MDOUBLE getBestLocalAlpha(int spIndex) {return _bestLocalAlphaVec[spIndex];}
|
|
MDOUBLE getBestGlobalAlpha(){return _bestGlobalAlpha;}
|
|
Vdouble getBestL() {return _bestLvec;}
|
|
private:
|
|
Vdouble _bestHkyParamVec;
|
|
Vdouble _bestLocalAlphaVec;
|
|
MDOUBLE _bestGlobalAlpha;
|
|
Vdouble _bestLvec;
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|