Katzlab dd76ab1d12 Added PTL2 Scripts
These are PTL2 files from Auden 2/9
2023-02-14 11:20:52 -05:00

84 lines
2.3 KiB
C++

// $Id: allTreesSeparateModel.cpp 962 2006-11-07 15:13:34Z privmane $
#include "definitions.h"
#include "treeIt.h"
#include "allTreesSeparateModel.h"
#include "bblEMSeperate.h"
#include <algorithm>
#include <iostream>
#include "someUtil.h"
using namespace std;
#ifndef VERBOS
#define VERBOS
#endif
allTreesSeparateModel::allTreesSeparateModel(){
_bestScore = VERYSMALL;
}
void allTreesSeparateModel::recursiveFind( const vector<sequenceContainer>* sc,
const vector<stochasticProcess>* sp,
const vector<Vdouble* > * weights,
const int maxIterations,
const MDOUBLE epsilon){
tree starT;
vector<int> ids;
get3seqTreeAndIdLeftVec(&(*sc)[0],starT,ids);
recursiveFind(starT,*sp,*sc,ids,weights,maxIterations,epsilon);
}
void allTreesSeparateModel::recursiveFind(tree et,
const vector<stochasticProcess>& sp,
const vector<sequenceContainer>& sc,
vector<int> idLeft,
const vector<Vdouble* > * weights,
const int maxIterations,
const MDOUBLE epsilon) {
if (idLeft.empty()) {
//static int k=1; k++;
MDOUBLE treeScore = evalTree(et,sp,sc,maxIterations,epsilon,weights);
//LOG(5,<<"tree: "<<k<<" l= "<<treeScore<<endl);
LOG(5,<<".");
if (treeScore > _bestScore) {
//LOG(5,<<"new Best score!"<<endl);
_bestTree = et;
_bestScore = treeScore;
_treeVecBest = _treeVecTmp; // keep the seperate trees too.
}
} else {
et.create_names_to_internal_nodes();
treeIterTopDown tIt(et);
tree::nodeP mynode = tIt.first();
mynode = tIt.next(); // skipping the root
for (; mynode != tIt.end(); mynode = tIt.next()) {
int NameToAdd = idLeft[idLeft.size()-1];
tree newT = getAnewTreeFrom(et,mynode,idLeft,sc[0][NameToAdd].name());
recursiveFind(newT,sp,sc,idLeft,weights,maxIterations,epsilon);
idLeft.push_back(NameToAdd);
}
}
}
MDOUBLE allTreesSeparateModel::evalTree( tree& et,
const vector<stochasticProcess>& sp,
const vector<sequenceContainer>& sc,
const int maxIterations,
const MDOUBLE epsilon,
const vector<Vdouble* > * weights) {
MDOUBLE res = 0;
vector<tree> tVec;
for (int k=0; k < sc.size(); ++k ) tVec.push_back(et);
bblEMSeperate bblemsep1(tVec,sc,sp,weights,maxIterations,epsilon);
res = bblemsep1.getTreeLikelihood();
_treeVecTmp = tVec;
return res;
}